caffe学习系列(17):模型各层数据和参数可视化 -尊龙游戏旗舰厅官网
尊龙游戏旗舰厅官网
收集整理的这篇文章主要介绍了
caffe学习系列(17):模型各层数据和参数可视化
小编觉得挺不错的,现在分享给大家,帮大家做个参考.
先用caffe对cifar10进行训练,将训练的结果模型进行保存,得到一个caffemodel,然后从测试图片中选出一张进行测试,并进行可视化。
in [1]:#加载必要的库 import numpy as np import matplotlib.pyplot as plt %matplotlib inline import sys,os,caffe in [2]:#设置当前目录,判断模型是否训练好 caffe_root = '/home/bnu/caffe/' sys.path.insert(0, caffe_root 'python') os.chdir(caffe_root) if not os.path.isfile(caffe_root 'examples/cifar10/cifar10_quick_iter_4000.caffemodel'):print("caffemodel is not exist...") in [3]:#利用提前训练好的模型,设置测试网络 caffe.set_mode_gpu() net = caffe.net(caffe_root 'examples/cifar10/cifar10_quick.prototxt',caffe_root 'examples/cifar10/cifar10_quick_iter_4000.caffemodel',caffe.test) in [4]:net.blobs['data'].data.shape out[4]:(1, 3, 32, 32) in [5]:#加载测试图片,并显示 im = caffe.io.load_image('examples/images/32.jpg') print im.shape plt.imshow(im) plt.axis('off') (32, 32, 3) out[5]:(-0.5, 31.5, 31.5, -0.5) in [6]:# 编写一个函数,将二进制的均值转换为python的均值 def convert_mean(binmean,npymean):blob = caffe.proto.caffe_pb2.blobproto()bin_mean = open(binmean, 'rb' ).read()blob.parsefromstring(bin_mean)arr = np.array( caffe.io.blobproto_to_array(blob) )npy_mean = arr[0]np.save(npymean, npy_mean ) binmean=caffe_root'examples/cifar10/mean.binaryproto' npymean=caffe_root'examples/cifar10/mean.npy' convert_mean(binmean,npymean) in [7]:#将图片载入blob中,并减去均值 transformer = caffe.io.transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_mean('data', np.load(npymean).mean(1).mean(1)) # 减去均值 transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2,1,0)) net.blobs['data'].data[...] = transformer.preprocess('data',im) inputdata=net.blobs['data'].data in [8]:#显示减去均值前后的数据 plt.figure() plt.subplot(1,2,1),plt.title("origin") plt.imshow(im) plt.axis('off') plt.subplot(1,2,2),plt.title("subtract mean") plt.imshow(transformer.deprocess('data', inputdata[0])) plt.axis('off') out[8]:(-0.5, 31.5, 31.5, -0.5) in [9]:#运行测试模型,并显示各层数据信息 net.forward() [(k, v.data.shape) for k, v in net.blobs.items()] out[9]:[('data', (1, 3, 32, 32)),('conv1', (1, 32, 32, 32)),('pool1', (1, 32, 16, 16)),('conv2', (1, 32, 16, 16)),('pool2', (1, 32, 8, 8)),('conv3', (1, 64, 8, 8)),('pool3', (1, 64, 4, 4)),('ip1', (1, 64)),('ip2', (1, 10)),('prob', (1, 10))] in [10]:#显示各层的参数信息 [(k, v[0].data.shape) for k, v in net.params.items()] out[10]:[('conv1', (32, 3, 5, 5)),('conv2', (32, 32, 5, 5)),('conv3', (64, 32, 5, 5)),('ip1', (64, 1024)),('ip2', (10, 64))] in [11]:# 编写一个函数,用于显示各层数据 def show_data(data, padsize=1, padval=0):data -= data.min()data /= data.max()# force the number of filters to be squaren = int(np.ceil(np.sqrt(data.shape[0])))padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) ((0, 0),) * (data.ndim - 3)data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))# tile the filters into an imagedata = data.reshape((n, n) data.shape[1:]).transpose((0, 2, 1, 3) tuple(range(4, data.ndim 1)))data = data.reshape((n * data.shape[1], n * data.shape[3]) data.shape[4:])plt.figure()plt.imshow(data,cmap='gray')plt.axis('off') plt.rcparams['figure.figsize'] = (8, 8) plt.rcparams['image.interpolation'] = 'nearest' plt.rcparams['image.cmap'] = 'gray' in [12]:#显示第一个卷积层的输出数据和权值(filter) show_data(net.blobs['conv1'].data[0]) print net.blobs['conv1'].data.shape show_data(net.params['conv1'][0].data.reshape(32*3,5,5)) print net.params['conv1'][0].data.shape (1, 32, 32, 32) (32, 3, 5, 5) in [13]:#显示第一次pooling后的输出数据 show_data(net.blobs['pool1'].data[0]) net.blobs['pool1'].data.shape out[13]:(1, 32, 16, 16) in [14]:#显示第二次卷积后的输出数据以及相应的权值(filter) show_data(net.blobs['conv2'].data[0],padval=0.5) print net.blobs['conv2'].data.shape show_data(net.params['conv2'][0].data.reshape(32**2,5,5)) print net.params['conv2'][0].data.shape (1, 32, 16, 16) (32, 32, 5, 5) in [15]:#显示第三次卷积后的输出数据以及相应的权值(filter),取前1024个进行显示 show_data(net.blobs['conv3'].data[0],padval=0.5) print net.blobs['conv3'].data.shape show_data(net.params['conv3'][0].data.reshape(64*32,5,5)[:1024]) print net.params['conv3'][0].data.shape (1, 64, 8, 8) (64, 32, 5, 5) in [16]:#显示第三次池化后的输出数据 show_data(net.blobs['pool3'].data[0],padval=0.2) print net.blobs['pool3'].data.shape (1, 64, 4, 4) in [17]:# 最后一层输入属于某个类的概率 feat = net.blobs['prob'].data[0] print feat plt.plot(feat.flat) [ 5.21440245e-03 1.58397834e-05 3.71246301e-02 2.28459597e-011.08315737e-03 7.17785358e-01 1.91939052e-03 7.67927198e-036.13298907e-04 1.05107691e-04] out[17]:[从输入的结果和图示来看,最大的概率是7.17785358e-01,属于第5类(标号从0开始)。与cifar10中的10种类型名称进行对比:
airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck
根据测试结果,判断为dog。 测试无误!
总结
以上是尊龙游戏旗舰厅官网为你收集整理的caffe学习系列(17):模型各层数据和参数可视化的全部内容,希望文章能够帮你解决所遇到的问题。
- 上一篇:
- 下一篇: